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(This note is a revision of the work of Vinod Prabhakaran from 2002.)

9.1 Basic L2 Convergence Theorem

Theorem 9.1 (Basic L2 Convergence Theorem) Let X1 X2, . . . be independent

random variables with E(Xi) = 0 and E(X2
i ) = σ2

i < ∞, i = 1, 2, . . ., and Sn =
X1 + X2 + · · · + Xn. If

∑∞
i=1 σ2

i < ∞, then Sn converges a.s. and in L2 to some S∞

with E(S2
∞) =

∑∞
i=1 σ2

i .

Recall: We have done this before, with the conclusion for the L2 case with the weaker
assumption that E(XiXj) = 0 for i 6= j. The only new thing is the conclusion of
a.s. convergence for the independent case. In fact, the proof just uses Kolmogorov’s
inequality from the last lecture. Thus the conclusion is valid for a martingale {Sn}
with E[Xn+1f(X1, . . . , Xn)] = 0 for all bounded measurable f : R

n → R.

Proof: First note that L2 convergence and existence of S∞ is implied by the orthog-
onality of the Xi’s: since E(XiXj) = 0 for i 6= j,

E(S2
n) =

n
∑

i=1

σ2
i , and

E((Sn − Sm)2) =
n
∑

i=m+1

σ2
i → 0 as m, n → ∞,

so Sn is Cauchy in L2. Since L2 is complete, there is a unique S∞ (up to a.s. equiva-
lence) such that Sn → S∞ in L2.

Turning to a.s. convergence, the method is to show the sequence (Sn) is a.s. Cauchy.
The limit of Sn then exists a.s. by completeness of the set of real numbers. The same
argument applies more generally to martingale differences Xi. Note that this method
gives S∞ more explicitly, and does not appeal to completeness of L2.

Recall that Sn is Cauchy a.s. means Mn := supp,q≥n |Sp − Sq| → 0 a.s. Note that
0 ≤ Mn(ω) ↓ implies that Mn(ω) converges to a limit in [0,∞]. So, if P(Mn > ε) → 0
for all ε > 0, then Mn ↓ 0 a.s.
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Let M∗
n := supp≥n |Sp − Sn|. By the triangle inequality,

|Sp − Sq| ≤ |Sp − Sn| + |Sq − Sn| ⇒ M∗
n ≤ Mn ≤ 2M∗

n,

so it is sufficient to show that M ∗
n

P
→ 0.

For all ε > 0,

P

(

sup
p≥n

|Sp − Sn| > ε

)

= lim
N→∞

P

(

max
n≤p≤N

|Sp − Sn| > ε

)

≤ lim
N→∞

N
∑

i=n+1

σ2
i

ε2
=

∞
∑

i=n+1

σ2
i

ε2

where we applied Kolmogorov’s inequality in the second step. Since
∑∞

i=1 σ2
i < ∞,

lim
n→∞

P

(

sup
p≤n

|Sp − Sn| > ε

)

= 0

Remark: Just orthogonality rather than independence of the Xis is not enough
to get an a.s. limit. Counterexamples are hard. According to classical results of
Rademacher-Menchoff, for orthogonal Xi the condition

∑

i
(log2 i)σ2

i < ∞ is enough
for a.s. convergence of Sn, whereas if bi ↑ with bi = o(log2 i) there exist orthogonal
Xi such that

∑

i biσ
2
i < ∞ and Sn diverges almost surely.

9.2 Kolmogorov’s Three-Series Theorem

An easy consequence of the Basic L2 Convergence Theorem is the sufficiency part of
Kolmogorov’s three-series theorem:

Theorem 9.2 (Kolmogorov) Let X1, X2, . . . be independent. Fix b > 0. Conver-

gence of the following three series

•
∑

n P(|Xn| > b) < ∞

•
∑

n E(Xn1(|Xn|<b)) converges to a finite limit

•
∑

n
Var(Xn1(|Xn|<b)) < ∞

is equivalent to P(
∑

n Xn converges to a finite limit) = 1
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Note: If any one of the three series diverges then

P

(

∑

n

Xn converges to a finite limit

)

= 0

by Kolmogorov’s zero-one law (will be shown later). Note also that if one or more of
the series diverges for some b, then one or more of the series must diverge for every
b, but exactly which of the three series diverge may depend on b. Examples can be
given of 8 possible combinations of convergence/divergence.

Proof: [Proof of sufficiency] That is, convergence of all 3 series implies
∑

n Xn con-
verges a.s. Let X ′

n = Xn1(|Xn|≤b). Since
∑

n P(X ′
n 6= Xn) =

∑

n P(|Xn| > b) < ∞, the
Borel-Cantelli lemma gives P(X ′

n 6= Xn i.o.) = 0 which implies P(X ′
n = Xn ev.) = 1.

Also if X ′
n(ω) = Xn(ω) ev., then

∑

n Xn(ω) converges ⇔
∑

n X ′
n(ω) converges.

Therefore it is enough to show that

P

(

∑

n

X ′
n converges to a finite limit

)

= 1

Now
N
∑

n=1

X ′
n =

N
∑

n=1

(X ′
n − E(X ′

n)) +

N
∑

n=1

E(X ′
n).

∑N

n=1 E(X ′
n) has a limit as N → ∞ by hypothesis, and

∞
∑

n=1

E((X ′
n − E(X ′

n))2) =
∞
∑

n=1

var(X ′
n) < ∞

implies that
∑∞

n=1(X
′
n −E(X ′

n)) converges a.s. by the basic L2 convergence theorem.

9.3 Kolmogorov’s 0-1 Law

X1, X2, . . . are independent random variables (not necessarily real valued). Let F ′
n =

σ(Xn, Xn+1, . . .) = the future after time n = the smallest σ-field with respect to which
all the Xm, m ≥ n are measurable. Let T = ∩nF

′
n = the remote future, or tail σ−field.

Example 9.3 {ω : Sn(ω) converges} ∈ T .
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Theorem 9.4 (Kolmogorov’s 0-1 Law) If X1, X2, . . . are independent and A ∈
T then P(A) = 0 or 1.

Proof: The idea is to show that A is independent of itself, that is, P(A ∩ A) =
P(A)P(A), so P(A) = P(A)2, and hence P(A) = 0 or 1. We will prove this in two
steps:

(a) A ∈ σ(X1, . . . , Xk) and B ∈ σ(Xk+1, Xk+2, . . .) are independent.

Proof of (a): If B ∈ σ(Xk+1, . . . , Xk+j) for some j, this follows from (4.5) in chapter
1 of [1]. Since σ(X1, . . . , Xk) and ∪jσ(Xk+1, . . . , Xk+j) are π-systems that contains Ω
(a) follows from (4.5) in chapter 1 of [1]).

(b) A ∈ σ(X1, X2, . . .) and B ∈ T are independent.

Proof of (b): Since T ⊂ σ(Xk+1, Xk+2, . . .), if A ∈ σ(X1, . . . , Xk) for some k, this
follows from (a). ∪kσ(X1, . . . , Xk) and T are π-systems that contain Ω, so (b) follows
from (4.2) in chapter 1 of [1].

Since T ⊂ σ(X1, X2, . . .), (b) implies that A ∈ T is independent of itself and the
theorem follows.

Recall Kronecker’s lemma: If an ↑ ∞ and
∑∞

n=1 Xn/an converges a.s., then
(
∑n

m=1 Xm)/an
a.s.

−→ 0 .

Let X1, X2, . . . be independent with mean 0 and Sn = X1 + X2 + · · · + Xn. If
∑∞

n=1 E(X2
n)/a2

n < ∞, then by the basic L2 convergence theorem
∑∞

n=1 Xn/an con-
verges a.s. Then Sn/an → 0 a.s.

Example 9.5 Let X1, X2, . . . be i.i.d., E(Xi) = 0, and E(X2
i ) = σ2 < ∞.

Take an = n:
∞
∑

n=1

σ2

n2
< ∞ ⇒

Sn

n

a.s.
→ 0.

Now take an = n
1

2
+ε, ε > 0:

∞
∑

n=1

σ2

n1+2ε
< ∞ ⇒

Sn

n
1

2
+ε

a.s.
→ 0.
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